Projective Power Entropy and Maximum Tsallis Entropy Distributions

نویسندگان

  • Shinto Eguchi
  • Osamu Komori
  • Shogo Kato
چکیده

We discuss a one-parameter family of generalized cross entropy between two distributions with the power index, called the projective power entropy. The cross entropy is essentially reduced to the Tsallis entropy if two distributions are taken to be equal. Statistical and probabilistic properties associated with the projective power entropy are extensively investigated including a characterization problem of which conditions uniquely determine the projective power entropy up to the power index. A close relation of the entropy with the Lebesgue space Lp and the dual Lq is explored, in which the escort distribution associates with an interesting property. When we consider maximum Tsallis entropy distributions under the constraints of the mean vector and variance matrix, the model becomes a multivariate q-Gaussian model with elliptical contours, including a Gaussian and t-distribution model. We discuss the statistical estimation by minimization of the empirical loss associated with the projective power entropy. It is shown that the minimum loss estimator for the mean vector and variance matrix under the maximum entropy model are the sample mean vector and the sample variance matrix. The escort distribution of the maximum entropy distribution plays the key role for the derivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tsallis Maximum Entropy Lorenz Curves

In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as $beta$ tends to one. Finally, by using ac...

متن کامل

Some possible rationales for Rényi-Tsallis entropy maximization

Distributions derived from the maximization of Rényi-Tsallis entropy are often called Tsallis’ distributions. We first indicate that these distributions can arise as mixtures, and can be interpreted as the solution of a standard maximum entropy problem with fluctuating constraints. Considering that Tsallis’ distributions appear for systems with displaced or fluctuating equilibriums, we show tha...

متن کامل

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions.

The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Rényi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingl...

متن کامل

Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions

The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...

متن کامل

An entropic view of Pickands' theorem

It is shown that distributions arising in Rényi-Tsallis maximum entropy setting are related to the Generalized Pareto Distributions (GPD) that are widely used for modeling the tails of distributions. The relevance of such modelization, as well as the ubiquity of GPD in practical situations follows from Balkema-De Haan-Pickands theorem on the distribution of excesses (over a high threshold). We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011